PHYSICS HOLIDAY ASSIGNMENT FORM TWO

1. A meter rule is suspended by a thread such that it is in equilibrium balanced by a permanent magnet attached to the meter rule and some weight as shown in figure 1 below.

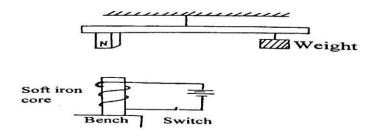


Figure 1

If the soft iron is fixed to the bench, state and explain the effect on the meter rule when the switch is closed.

- 2. A part from images being formed behind the mirror, state any other two similarities of images formed by a plane mirror and a convex mirror.
- 3. The frequency of the sound emitted by the loudspeaker is 1020Hz. Calculate the wavelength of the sound wave in air where its velocity is 340m/s
- 4. A gun is fired and an echo heard at the same place 0.6s later. How far is the barrier, which reflected the sound from the gun? (Speed of sound in air=330ms⁻¹
- 5. Explain how the wing below increases the dynamic lift of an airplane.

6. Figure 3 shows a mass of 12g suspended on a set of 6 identical springs. When the mass was hanged on spring A, it extended by 6cm.

Fig. 7

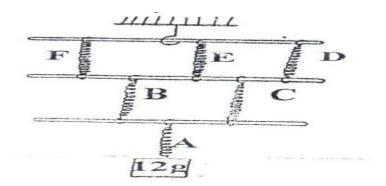


Figure 3

Determine the extension of the combination shown if each spring and rod has negligible weight

7. A uniform bar one meter long is balanced at the 30 cm mark when a load of 3.2 N is hung at the zero mark as shown in the figure 4.

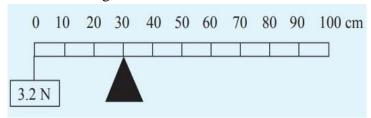


Figure 4

Show the position through which the weight of the bar acts and calculate the weight ofthe bar

8. The figure 5 shows a micrometer screw gauge used to measure the diameter of a rod in millimeters. Name the parts labelled P, Q, R.

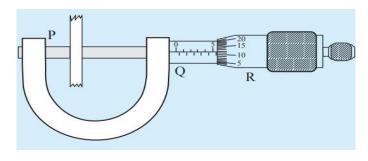


Figure 5

9. The figure 6 below shows a Bunsen burner in three different positions.

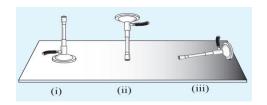


Figure 6

Identify the states of equilibrium in (i) and (ii).

- 10. State Fleming's left hand rule.
- 11. State how the speed of sound in air is affected by increase in humidity
- 12. a) State one reason why diffusion in gases is faster than diffusion in liquids.
 - b) In an experiment to estimate the diameter of an oil molecule, an oil drop of radius 2.5 x 10^{-4}m spreads over a circular patch whose diameter is 20cm. Determine:
 - i. The volume of the oil drop
 - ii. The area of the patch covered by the oil.
 - iii. The thickness of the oil molecule.
 - iv. State one assumption made in (b) (iii) above.
- 13. The figure 7 below shows a wave profile.

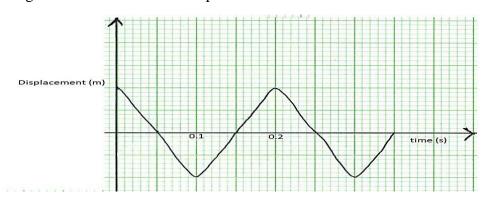
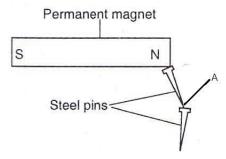



Figure 7

- i) Explain what is meant by amplitude in this context.
- ii) From the figure determine
 - I) The period
 - II) The frequency
- iii) Calculate the wavelength of the sound wave in the figure. Take the velocity of sound in the

gas to be 340m/s

- iv) State two factors that can increase the speed of sound in solids
- v) A student stands some distance from a high wall and claps his hands
 - I. What two measurements would need to be made in order to determine the speed of sound?
 - II. Describe how you would make use of these measurements
 - 14. The fig below shows the magnetization method

- (i) State the method of magnetization shown above
 - (ii) State the polarity of point A in the pin attached to the magnet
 - (iii) The figure 8 below shows an electromagnetic relay.

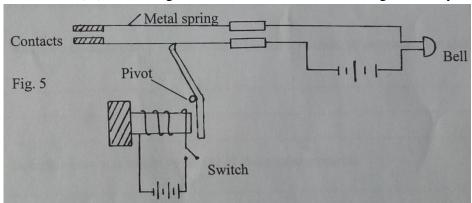


Figure 8

Explain what happens when the switch is closed.

- iii) A bar magnet can be used as compass. Describe how you would achieve this.
- iv) The figure 9 below shows a straight conductor AB carrying current in a magnetic field.

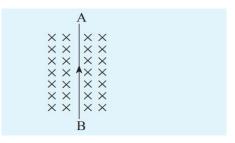


Figure 9

State any two ways in which the force can be:

- increased
- made to change direction
- 15 a) Define the following terms as applied to curved mirrors:
 - (I) Pole
 - (II) Centre of curvature
 - (III) Principal focus of a convex mirror
 - b) By ray diagram construction, locate and describe the image fully when the object is between P and F of a concave mirror
 - c) The figure 10 shows air flowing through a pipe of non-uniform cross sectional area. Two tubes A and B are dipped into the liquid as shown.

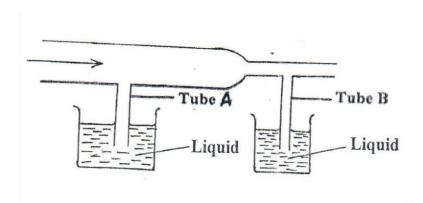
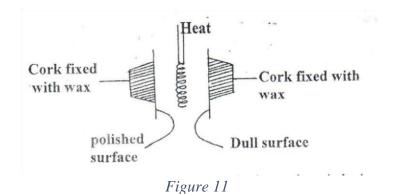



Figure 10

- (I) Indicate the level of the liquid in tubes A and B
- (II) Explain your answer in part (a) above

d) Figure 11 below shows two pieces of cork fixed on a polished and a dull surface with wax.

State and explain the observation made, when the heater is switched on for a short time given that the heater is equidistant from the two surfaces)

- 16 a) State Bernoulli's principle.
- b) The On the space below, sketch a graph to show how the mass per unit volume of water varies between 0°C and 10°
- c) Air pressure at the base of a mountain is 70cmHg while at the top of the mountain is 50cmHg. Given that the average density of air is 130kg/m³ and the density of mercury is 13600kg/m³. Determine the height of the mountain.
- d) The diagram below shows a Bunsen burner.

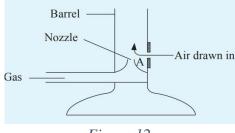


Figure 12

- 17. Explain the working of the burner as an application to Bernoulli's principle.
 - e) Identify 2 modifications that are introduced to the buses to ensure stability?